CSIM's General Blocks Library

8/3/06 MWS

Outline

* History

== el
* Why General Blocks? =L - 2 _
 Advantages .]

] = =
@ D n t : y - LK il i Select_E (>|
I V o Router gl {far‘ttonvert b= . E‘Porttonuer‘t) [
(PortConvert) <9 i

!; {Router) '“"

| CopulSL

il

i B Frio_A - i
[{InsertFieldParam)

e Status =1

{AbsDelay) < LN F Prio_B #

| CInsertFieldParan)

" " " -
e Library Description oo p | [N
| Generats_Telay = = Tell (Receiver) |
(I?Eneral,ExpressiUn:ﬁl }"(Rcunst) -

.F‘UniFormRangenParam [__}_| - . = "
(UnifornRangenParan) | Rev_Exit

* Example simulations [N ol

History

CSL

M

* The General Blocks library was developed

as a replacement for BONeS (Block
Oriented Network Simulator)

- BONeS was developed at the University of
Kansas, and was commercially available from

~1988-1999 (Comdisco/Alta/CADence)

- BONeS was used by a significant community

- The General Blocks library was initially

developed 1999-2002. Significant enhancements

have occurred since, and are ongoing.

CSIM

Why Use General Blocks?

» Advantages of the General Blocks library

- Ability to leverage significant residual BONeS
expertise, compare known results

- The block oriented approach (=310 mostly small,
simple blocks) enables fine granularity in
architecture definition and tracing

- Extremely flexible; can easily implement new
modules that would be more difficult in other
model libraries

Advantages

e Sophisticated models for server resources

- Priority, preemption, round robin
* Popups provide message details for selected blocks

e Extremely flexible mechanism for representing messages
(data_structs.txt)

e Minimum need to become involved with C code
 Many built-in statistical models and display mechanisms

* Significant upgrades recently to help accelerate the
Initial design/debug cycle

e Useful for modeling data-processing systems, or other
systems (ex. not signal processing), not covered by DFG
modeling methods.

Disadvantages

CSL

M

* Does not inherently separate hardware from

software
- Cannot use DFG Schedulers.

Can be computationally inefficient for large

models (flip side of flexible)
Oriented toward static topologies

Not specialized for modeling specific kinds of

systems.

General Blocks does not (currently) utilize

transfer rates on links

CSIM!

The Phases of Development

* Phase 1: Initial Model Development/Debug

- Graphical display can be extremely valuable in
facilitating verification and debug

* Phase 2: Data Generation and Analysis

- Usually, data generation (i.e. Monte Carlo) is most
effectively completed using automated, non-graphical
methods

- Analysis of the collected data usually utilizes graphical
methods (plotting, graphing, etc)

* Phase 3: Results presentations/marketing

- Presentations to management/customers can benefit
from attractive real-time graphical demos

Careful organization of the model in the beginning will
greatly benefit the eventual real-time graphical demos

CSIM

CSIM: an Open Architecture Tool

* CSIM is based upon a “toolbox” approach

- “CSIM” Is actually the assembly of many
iIndependent tools and libraries; it is not a
monolithic (“stovepipe”) chunk of code

- The key independent tools/libraries include:

* CSIM precompiler

* CSIM kernel library

e GUI

* Simview

 XGraph

 NumuUtils, general_utils
* The Model Libraries

CSIM

CSIM: an Open Architecture Tool

* CSIM is based upon a “toolbox” approach

- CSIM leverages the existence of available
applications, tools, utilities and standards

* Minimizes CSIM-specific development, maintenance
and documentation (“avoid re-inventing the wheel”)

 Examples of applications/tools/libraries leveraged

- Compilers (cc, gcc, etc.)

- Debuggers (gdb, ddd, etc.)

- Text editors (vi, emacs, wordpad, textedit, etc.)
- Libraries (C language, OpenGL, Motif, OTK, etc.)
- Graphical viewers/editors (xv, gimp, etc.)

- Data standards (xml, xpm, etc.)

CSIM!

Application

* Typically, the General Blocks Library is used to model
and simulate networked computer resources to:

- Identify points of contention
- Estimate performance limits or bottlenecks
- Evaluate processor utilizations
- Evaluate system latencies
- etc.
e The types of outputs typically obtained include:

- Scatter plots, histograms and statistical measures of
latency data

10

Status

* The General Blocks library currently contains

more than 310 models in the following groups:

* Arithmetic

* Comparison

* Conversions

* Counters

* Data Type Operations
* Data Structure Access
* Delays

* Execution Control

* File Access

* Generators

* Logical

* Loops

* Memory

* Miscellaneous

* Plot Generation

* Quantity Shared Resource
* Queues And Servers
* Probes

* Queues

* Servers

* Statistics

* Switches

* Timers

* Traffic Generators

CSIM

11

CSIM

Recent Additions

 Additional models are being added to the library

 These new models include:

- Admin

- Append_Route_List
- Append_String

- Generic_Batcher

- Generic_UnBatcher
- LockRealTime

- Num_to_String

- PlotLive

- PortConvert

- QSR1

- QSR2

- Receiver

- Router

- Sender

- Switch_5way

12

General Blocks Library Devices

New_Models
Generic_Batcher
Generic_UnBatcher
Receiver
Sender
PlotLive
LockRealTime
QSR1
QSR2
Switch Sway

Vectors
VCreate
Setup VElem
VLen
Access_Vector
GVCreate
Setup_ GVElem
GVLen
Access_GVector

Traffic Generators
Uniform_PulseTrain
Poisson_PulseTrain
Enabled Uniform PulseTrain
Enabled Poisson PulseTrain
Enabled PulseTrain
Arbitrary PulseTrain

Timers

Start Timer
Set_Alarm
Service Timer
Residual Time
Reset_Timer
Cancel Timer
Cancel_Alarm
Alarm_Active

Switches
True N Times

T GT_Startup

T GE ParamSwitch 4way
Switch

Real Within Boundaries
Rand Switch_Param

Rand Switch

~ R
o
m o~
a0

LEQ C
Enabled Switch
Bypass

Statistical
WeightedMeanAndVariance
Weighted General Moments
Throughput

Time Average
MeanAndVariance

Histogram

Global_Statistics
General Nth Moment

Find Bin
Dimensioned Time Average
Dimensioned Ensemble Average
Construct TimeAverage Stats
Construct Dimensioned_Stats
Batch_Timing
Batch_Statistics

Batch Rmin

Batch Rmax

Batch_Mean

Average

Server Resource
SR _Server Ultilization Probe

SR_Server Utilization Per Priority Probe

SR_Server Response Probe
SR_Server_Occupancy_Probe

SR _Preempt Server Utilization Probe

SR _Preempt Server Utilization Per Priority Probe
SR_Preempt Server Response Probe

SR _Preempt_Server Occupancy Probe

Set Resource

Set Preempt Resource
Service wRoundRobin
Service_wPriority Preemption
Service_wPriority

QueuesAndServers
FIFOwServers
MultipleServers
ParallelQueues
PQwServers

Queues

Simple LIFO
Simple FIFO
FIFOwPriority
FIFO_wPeek

QuantityShared Resource
Set_QResource
FreeBasic
Free
ConsumeResourceUnits
ChangeCapacity
AllocatePriority
AllocateParam
AllocateBasic
Allocate

Probes
WriteTnow
ThroughputDelayProbe
ThroughputVsTimeProbe
TextualDescriptionProbe
SystemLatencyProbe
ScatterPlotZ
ScatterPlotQ
ScatterPlot
SelectFieldProbe
RealvsTimeProbe
ProcessTimeLineProbe
InsertStatFields
HistogramProbeF2 F1
HistogramProbe
GenericProbe
GenericHyperGraphProbe
EventProbe with Comm
EventProbe
CreateCDFfilelnit
CreateCDFfileF2 F1
CreateCDFfile
BatchStatisticsProbe 2 f1
BatchStatisticsProbe
BatchNthMomentProbe {2 fl
BatchNthMomentProbe
BatchMeanProbe 2 fl
BatchMeanProbe

Plot_Generation
BuildPlot_Ytime
BuildPlot_Yonly
BuildPlot Y
BuildPlot XY
BuildPlot
BuildHistogram

CSIM

Number Generators
UserCDF RanGen
UniformRangenParam
UniformRangen
U_0_to_1_RanGen
TStop
TNow
Rconst
PoissonRangenParam
PoissonRangen
NO1 Rangen
NormalRangen
NormalRangenParam
IU_Parem
IU_NE_C
IU_MinMax_Param
IU_MinMax
U
Iconst
GammaRangenParam
GammaRangen
ExponRanGenParam
ExponRanGen
BinomialRangenParam
BinomialRangen

Miscellaneous
TimeBetweenTriggers
SystemCall
ServiceSetup
Print_message
PrintEnvelope
Print real
Print_int
Dijkstra
Central Utilities
Ack_Setup

13

CSIM

General Blocks Library Devices |

Number Generators
UserCDF_RanGen
UniformRangenParam
UniformRangen
U 0 to 1 RanGen
TStop
TNow
Rconst
PoissonRangenParam
PoissonRangen
NO1_Rangen
NormalRangen
NormalRangenParam
IU Parem
IUNE C
IU_MinMax_Param
IU_MinMax
U
Iconst
GammaRangenParam
GammaRangen
ExponRanGenParam
ExponRanGen
BinomialRangenParam
BinomialRangen

Miscellaneous
TimeBetweenTriggers
SystemCall
ServiceSetup
Print_message
PrintEnvelope
Print_real
Print_int
Dijkstra
Central_Utilities
Ack_Setup

Memory
WriteMemory
RealLocalMem
ReadMemory
MultipleBuffers
Mem_increment
Mem_decrement
LocalMem wCopy
LocalMemRef
LocalMem
IntLocalMemory
ActiveReadMemory

Loops
Real Do Param
Real Do
Int Do Param
Int Do 1 N
Int Do 0 Nminusl
Int Do

Logical
False
True
Nxor
Xor
Nor
Nand
Not
Or
And

Graphical Interface
Slider box
PromptInt

PromptFloat
PopUpMessage
Navigate View
MPGraph

Hilite Box
GenericProbePopup
ColorController
ColorBox

Button box

File_Access

WriteInfo Numeric
WriteFile_String
WriteFile Real
WriteFile Field
WriteFile AppendField
WriteFile Int
ReadFile String
ReadFile_Real
ReadFile Line
ReadFile Int
OpenFileWrite
OpenFileRead
OpenFileAppend
CloseFile

Execution_Control
Wrapup

Terminate

OneWay

OnePulse

Merge

Init

Gate_Switch

Gate

Execute in_order 4
Execute in_order 3
Execute in order

Control_Signal Generator

Delays
FixedProcDelay
FixedAbsDelay
AbsDelay

Data_Structure Access
TypeSwitch
SelectField
MakeRealDS
InsertTNow

InsertMultipleFieldParams

InsertMultipleTNow
InsertFieldTNow
InsertFieldParam
InsertField
Declare DS
Create DS

Coerce_ DS

Data_Structure Operations

TypeOf
TypeConst
TypeCompatible
Tequals

Split wDelay
Split3

Split

Sink

Junction

Join

Copy2
CopyDS_wDelay
CopyDS

Counters

UpDownCounterChangeValue

UpDownCounter
SimpleCounter
Int Accumulator
GlobalCount
Counter
CircularCounter
Accumulator

Conversions
Truncate
Round
Int to Real

Comparison
StringEqualsParam
Set_Equals

R _LessThanOrEqual
R_LessThan
R_GreaterThanOrEqual
R GreaterThan
R_Equals

Odd

I LessThanOrEqualE

I LessThan
I_GreaterThanOrEqual
I_GreaterThan

I Equals

Even

Arithmetic
Increment
Decrement
I add
I subtract

Imult

1 mult

I div

I _divprotect

Imod

1 mod

Iabs

Imin

Imax

Ichs

Igain

R add

R _subtract

R_mult

R _div

R_divprotect

Rsqrt

Rabs

Rmin

Rmax

Rchs

Rgain

sin X

cos_X

tan_ X

In X

exp X

X powr_Iconst

X powr Y
five_input_expression
one_input_expression_R
one_input_expression [
Rlimiter

Tlimiter

Reciprocal

General Expression

14

Library Configuration

General Blocks based
simulations generally utilize
several libraries

All.sim contains the basic
elements (devices) of the
General Blocks library.

Library.sim contains information
to group the All.sim models into
manageable hierarchical groups

One or more local libraries,
containing module level and
sometimes device level models,
are generally referenced

® The User's simulation model will

reference these libraries

users lib.sim

CSIM

My model.sim

15

CSIM

General Blocks Files

 Library.sim is used to organize the models into
logical groupings for display and access by the
CSIM qui

 All.sim contains the detailed implementation code
for all of the models in the library

e data structs.txt contains the definitions for all
compound data structures (message definitions)
that will be used in simulation

* All simulations will require an All.sim and a
data structs.txt; Library.sim is optional (although
very useful).

 CSIM will provide additional object files.

16

Starting A New Model

e To Start a new General-Blocks model:

1 Include reference to GenBlocks model library

* File /Import by Reference
* $CSIM_MODEL LIBS/general blocks/Library.sim
2 Begin drawing block diagrams

* The main file to include is Library.sim

- Lists and categorizes all models
- Includes All.sim

e The All.sim file contains all the block models

17

Excerpts from Library.sim

%include $CSIM_ROOT/model_libs/general_blocks/All.sim

<DEFINE_LIBRARY> Counters
<MODEL> UpDownCounterChangeValue </MODEL>

<MODEL> UpDownCounter </MODEL>
<MODEL> SimpleCounter </MODEL>
<MODEL> Int Accumulator </MODEL>
<MODEL> GlobalCount </MODEL>
<MODEL> Counter </MODEL>
<MODEL> CircularCounter </MODEL>
<MODEL> Accumulator </MODEL>
</DEFINE_LIBRARY>

<DEFINE_LIBRARY> Conversions

<MODEL> Truncate </MODEL>
<MODEL> Round </MODEL>
<MODEL> Int to Real </MODEL>
</DEFINE_LIBRARY>

<DEFINE_LIBRARY> Comparison

<MODEL> StringEqualsParam </MODEL>
<MODEL> Set Equals </MODEL>
<MODEL> R_LessThanOrEqual </MODEL>
<MODEL> R LessThan </MODEL>

<MODEL> R _GreaterThanOrEqual </MODEL>

<MODEL> R _GreaterThan </MODEL>
<MODEL> R _Equals </MODEL>
<MODEL> Odd </MODEL>

<MODEL> |_LessThanOrEqualE =~ </MODEL>
<MODEL> |_LessThan </MODEL>
<MODEL> |_GreaterThanOrEqual </MODEL>

<MODEL> |_GreaterThan </MODEL>
<MODEL> | _Equals </MODEL>
<MODEL> Even </MODEL>

</DEFINE_LIBRARY>

<DEFINE_LIBRARY> Plot _Generation

- <MODEL>

- <MODEL>
- <MODEL>
- <MODEL>
- <MODEL>

- <MODEL>

BuildPlot Ytime </MODEL>
BuildPlot_Yonly </MODEL>
BuildPlot_Y </MODEL>
BuildPlot_XY </MODEL>
BuildPlot </MODEL>
BuildHistogram </MODEL>

</DEFINE LIBRARY>

<DEFINE LIBRARY> Number_Generators

- <MODEL>

- <MODEL>
- <MODEL>
- <MODEL>
- <MODEL>
- <MODEL>
- <MODEL>
- <MODEL>
- <MODEL>
- <MODEL>
- <MODEL>
- <MODEL>
- <MODEL>
- <MODEL>
- <MODEL>
- <MODEL>
- <MODEL>
- <MODEL>
- <MODEL>
- <MODEL>
- <MODEL>
- <MODEL>
- <MODEL>

- <MODEL>

UserCDF_RanGen </MODEL>
UnlformRangenParam </MODEL>

UniformRangen </MODEL>

U 0 _to_1_RanGen </MODEL>
TStop </MODEL>

TNow </MODEL>
Rconst </MODEL>
PoissonRangenParam </MODEL>
PoissonRangen </MODEL>
NO1 Rangen </MODEL>
NormalRangen </MODEL>
NormalRangenParam </MODEL>
IU_Parem </MODEL>

IU NE C </MODEL>
IU_MinMax_Param </MODEL>
IU_MinMax </MODEL>

U </MODEL>

Iconst </MODEL>
GammaRangenParam </MODEL>
GammaRangen </MODEL>
ExponRanGenParam </MODEL>
ExponRanGen </MODEL>

BinomialRangenParam </MODEL>
BinomialRangen </MODEL>

</DEFINE_LIBRARY>

CSIM

18

Example Model from All.sim

DEFINE_DEVICE TYPE: R _add
PORT _LIST(in1, in2, out);

DOCUMENTATION:
/**/
/* The model adds the value of in1 and in2 */
/* Input Ports */
/* inl Data Type: REAL */
/* in2 Data Type: REAL */
/* Output Ports */
/¥ out Data Type: REAL */
/* Parameters(none) */

/**/

END_DOCUMENTATION.
DEFAULT_ICON($CSIM_MODEL_LIBS/general_blocks/lcons/2_1.ppm);

DEFINE_THREAD: start up
{

Envelope *a, *b;

float x, y; inlen;

while (1)

{
RECEIVE("in1", &a, &len);

X = consume_real(a);
RECEIVE("in2", &b, &len);

y = consume_real(b);
X=X+Y;

a = make_real_envelope(x);
SEND("out", a, 1);

}

}
END_DEFINE_THREAD.

END _DEFINE_DEVICE_TYPE.

CSIM

19

General Blocks Messages

CSIM!

Data structures are used to represent messages.

In the General Blocks Library, there can be several types of
messages

- “Simple” data structures definitions are built-in
* Int, real, string

- Compound data structures are defined by the user in the
data_structs.txt file

* Assemblies of simple data structures
Typically, data structures contain several fields:

- Some may contain information about the message, i.e. message size,
message priority, message creation time

- Others may be used to hold information about the system state, probe
data, calculation results, etc.

Some General Blocks “devices” (i.e. Built-in models) operate with
compound data structures

- Others require specific simple data structures

User models may require specific compound data structures
20

Example data structs.txt

<DEFINE_DATA_STRUCTURES> struct Event_Data
{ real EVENT_START TIME=0
struct Throughput_Delay DS int EVENT_SEQUENCE_NUMBER=0
{ int EVENT_TYPE_PARAMS _INDEX=0
real Mean Delay=0 real PREV_LINKED EVENT _START _TIME=0
real Var_Delay=0 int PREV_LINKED EVENT _SEQ NUMBER=0
real Mean_Throughput=0 int SOFT_RESET_COMMAND=0
real Var_Throughput=0 real EVENT_LENGTH X 100 NSEC=1000
int Nsamples }
}
struct Application_Message Transaction DS
struct Basic_Statistic { int Application_Message Type Code=0
{ real mean int Application_Message_Sequence_Number=0
real variance int Application_Message Source=0
real min int Application_Message Destination=0
real max int Application_Message Size Bytes=10
int Nsamples=0 int Application_Message Priority=0
} real Application_Message Create Time=0
real Application_Message Start XMIT Time=0
struct Timing_Packet real Application_Message_Complete XMIT_Time=0
{ real Time_Created real Application_Message RCV_Complete Time=0
real Intermediate_Time real Application_Message Destination Time=0
real Time_Finished Event Data Application_Message User Data
int Length gvec My _Vector_Data
int Type }
}

</DEFINE_DATA_STRUCTURES>

CSIM

21

The compound
data structure
used here is:

<DEFINE DATA STRUCTURES>

struct CompuSys

{

char MsgType=Heartbeat
char Stack ACK

char ACK=NoACK
int NUMBER

int MsgLENGTH

int PRIORITY

real CREATED

real COMPLETED
real MEAN

real EARLIEST

real LATEST

real INTERMEDIATE

}

</DEFINE_DATA_STRUCTURES>

A Data Structure comes in

A copy iz made

u
i

iz inzerted into
the data structure

The current time |

InzertTimeINTERMEDIATE

(InzertTime)

A copy i= made
of a field in the
data structure

The field i=s
uzed to calculate
a service time

Bazed upon the three
received data structures
and itz current status,
the CPU executes the
transaction

A field i=
zelected from
the data structure

The message is
queued baszed upon
the walue of the
zelected field

ervicelimeln

| CPUpriorite

[Izon

Pr

iority

CPUResource

(Service_wPriority)

reject

ectApplicationPRIORITY r_—_—_-i 3
: -

The copy i= u=zed
to trigger the
generation of

an integer to

be uzed az the
priority of a
transaction

If the CPU gueus
overflows, the
message is
rejected

Data Structures Approach

kind
* The Data_Type_Container (Envelope) is ni
the atomic component of data n2
structures for the general blocks library T

e Compound data structures are built
from linked lists of Envelopes

* Organization of an Envelope:

*variable_name

*type name

*next
*child

ref count

struct Data Type Container
{
int kind, nl, n2; /* Type and dimension(s). */
void *data;
char *variable name, *type name;
struct Data Type Container *next, *child,;
int ref count;
} *DATA_STRUCTURE DEFINITIONS=0;

typedef struct Data Type Container Envelope;

CSIM

Copying Messages

* There are two methods for copying (splitting)
messages (data structures)

- Pass a pointer (very fast)
- Make a deep copy of the data structure (can be slow)

* Different models use one or the other approach (i.e.
Junction uses pointers, Copy DS makes a deep

copy)

e Deep copvying may be required if both copies of the
DS vI\:/)iII b%ymgdifie%l : P

* Pointer copying may be used if the copy is only
peing used as a trigger (for example)

24

Resources, Servers

ResourcelD = CPU1

CSIM!

and Probes

ResourcelD = CPU1

1¢
Set_Preempt Resource §--...
&

A_- » v ..

Service wPriority Preemption

ResourcelD = CPU1

Service wPriority Preemption
ResourcelD = CPU1

Service wPriority Preemption

ResourcelD = CPU1

» The properties of a Resource (i.e. CPU)
are defined using a Set_Resource device

e Many (i.e. hundreds) of Servers (i.e.
Service wPriority Preemption) may be
mapped to a single Resource

 Anindividual Server is often used to
represent the execution of a particular
piece of software

e The correlation between resources,
servers and probes is set by the
ResourcelD attribute

SR Preempt Server Utilization Probe

ResourcelD = CPUI

SR_Preempt_Server Occupancy Probe

ResourcelD = CPUI

SR Preempt Server Response Probe

ResourcelD = CPU1

SR Preempt Server Utilization Per Priority Probe

Up to four Probes (as shown) may be
attached to a given Resource

The Utilization probes output two files:

- Batched and global utilization
The other probes each output four files:

- Batched and global average
- Batched and global peak

25

Examples

e “Histogram testcase”
- Objective:

* Need to run many Monte Carlo iterations of a simulation

* Need to collect latency statistics (min, mean and max) for four point
pairs (12 data points per iteration)

* Need to identify the global min, mean and max for each
* Need a histogram of the complete data set for one of the point pairs
* Need to generate all required output fully automatically

- Approach:

e Use the Iterator to run iterations and collect min, mean and max

* Use a separate “simulation” to (redundantly) collect min, mean and
max

Use another separate “simulation” to assemble a global histogram
Tie together with several scripts
Demonstrate some “unusual” applications of a CSIM model

26

Block Diagram of “hist test

M

Run Iterator
(each 1teration)

CSIM

Run N Times

—>

Run core
simulation

Move
files

| Run data
collector

Move
files

27

Using General Blocks as a Visual
Programming Environment

Module: Coll

* This CSIM =
“model” ,
reads four i |
files (scatter E—
p|<|>t OIaEa). " |
calculates the T
min, mean !@@QH
and max .
values for
each, and icee |]

appends the
results onto
other files.

HehEoer
%loseFile
fCloseFil ® |

r’E&TDS&%T s [

Running Simulations Faster (Summary)

e For the fastest simulation turnaround:

- Run nongraphically

- Compile with optimization

- Execute from the local /tmp directory

- Direct stdout and stderr into a file

- Run from the fastest machine available

29

Running Simulations Faster (Detal

CSI

M

Is)

e Graphical simulations will run slower than nongraphical

* A running graphical simulation will run faster
- while animation is turned off

- By increasing the time display increment (slightly)

- By directing terminal output to a file (stdout & stderr)

* You can build a faster graphical simulation

- By turning off debugging (removing -g from gcc cmd)
- By turning on optimization (adding -O3 to gcc cmd)

- By copying all files to the local /tmp directory
executing there

and

30

| | | CSIM!
Running Simulations Faster (Details)

e Efficient simulations are always faster than
inefficient simulations

- Build times are proportional to the number of
devices (boxes)

- Simulation time is proportional to the number of
device-events

- Extraneous devices, inefficiently implemented
models, etc. slow things down proportionately

31

Router Model

 Router has 16 bidirectional ports

- Flexible specification of routing rules, i.e.

* route 24 50 20 =p5
* route 24 50 20 7 =pl
e route DEFAULT = p2
* route cabinet2 card3 cpu4 = p4
e route 24 50 F = p3

e Supports multicast publish, subscribe
e multi w Xy z=pl p2 p3 p4

e Supports dynamic subscribe/unsubscribe
e subscribe 24 50 20 6 = p6 p8
* unsubscribe 24 50 20 1 =pl3 pl4

32

CSIM

Admin Model

* The Admin is a scheduler, oriented to networked
environments
e Operation:

- A message, containing a task name, is sent to the Admin to
request initiation of the task. The “tasks” are typically
comparable to a sequence diagram.

- The admin uses the specified algorithm (four are supported)
to assign the task to a processor. It updates its status table.

- The admin sends a message to the assigned processor to
start a task of the specified type

- The processor interprets the message and starts the task.

- At the completion of a task, the processor sends a message
to the Admin to report the task completion.

- The Admin updates its status table.

33

Admin Task Assignment

* A file (task table.dat) defines:

- Task names, processor names, scheduling
algorithms and maximum task loading for
each processor

* An example task table:

CPUl CPU2 CPU3 CPU4 CPUS CPU6
tskl fill u 8 7 0 0 7 8
tsk2 fill d 5 0 0 0 0 5
tsk3 u task 3 0 4 4 0 3
tsk4 u all 5 2 6 6 2 5

CSIM

Sender/Receiver

* The Sender and Receiver models use
named synchrons to “wirelessly” send
data structures between points

* One to one, one to many, many to one
and many to many configurations can be

supported

* Typically used to distribute control
signals, alarms and triggers

35

