
1

CSIM's General Blocks Library

8/3/06 MWS

2

Outline

● History

● Why General Blocks?
● Advantages
● Disadvantages

● Status

● Library Description

● Example simulations

3

History

● The General Blocks library was developed
as a replacement for BONeS (Block
Oriented Network Simulator)
– BONeS was developed at the University of

Kansas, and was commercially available from
~1988-1999 (Comdisco/Alta/CADence)

– BONeS was used by a significant community
– The General Blocks library was initially

developed 1999-2002. Significant enhancements
have occurred since, and are ongoing.

4

Why Use General Blocks?

● Advantages of the General Blocks library
– Ability to leverage significant residual BONeS

expertise, compare known results
– The block oriented approach (>310 mostly small,

simple blocks) enables fine granularity in
architecture definition and tracing

– Extremely flexible; can easily implement new
modules that would be more difficult in other
model libraries

5

Advantages
● Sophisticated models for server resources

– Priority, preemption, round robin
● Popups provide message details for selected blocks

● Extremely flexible mechanism for representing messages
(data_structs.txt)

● Minimum need to become involved with C code

● Many built-in statistical models and display mechanisms

● Significant upgrades recently to help accelerate the
initial design/debug cycle

● Useful for modeling data-processing systems, or other
systems (ex. not signal processing), not covered by DFG
modeling methods.

6

Disadvantages
● Does not inherently separate hardware from

software

– Cannot use DFG Schedulers.
● Can be computationally inefficient for large

models (flip side of flexible)
● Oriented toward static topologies
● Not specialized for modeling specific kinds of

systems.
● General Blocks does not (currently) utilize

transfer rates on links

7

The Phases of Development
● Phase 1: Initial Model Development/Debug

– Graphical display can be extremely valuable in
facilitating verification and debug

● Phase 2: Data Generation and Analysis
– Usually, data generation (i.e. Monte Carlo) is most

effectively completed using automated, non-graphical
methods

– Analysis of the collected data usually utilizes graphical
methods (plotting, graphing, etc)

● Phase 3: Results presentations/marketing
– Presentations to management/customers can benefit

from attractive real-time graphical demos

Careful organization of the model in the beginning will
greatly benefit the eventual real-time graphical demos

8

CSIM: an Open Architecture Tool

● CSIM is based upon a “toolbox” approach
– “CSIM” is actually the assembly of many

independent tools and libraries; it is not a
monolithic (“stovepipe”) chunk of code

– The key independent tools/libraries include:
● CSIM precompiler
● CSIM kernel library
● GUI
● Simview
● XGraph
● NumUtils, general_utils
● The Model Libraries

9

CSIM: an Open Architecture Tool

● CSIM is based upon a “toolbox” approach
– CSIM leverages the existence of available

applications, tools, utilities and standards
● Minimizes CSIM-specific development, maintenance

and documentation (“avoid re-inventing the wheel”)
● Examples of applications/tools/libraries leveraged

– Compilers (cc, gcc, etc.)
– Debuggers (gdb, ddd, etc.)
– Text editors (vi, emacs, wordpad, textedit, etc.)
– Libraries (C language, OpenGL, Motif, OTK, etc.)
– Graphical viewers/editors (xv, gimp, etc.)
– Data standards (xml, xpm, etc.)

10

Application

● Typically, the General Blocks Library is used to model
and simulate networked computer resources to:

– Identify points of contention
– Estimate performance limits or bottlenecks
– Evaluate processor utilizations
– Evaluate system latencies
– etc.

● The types of outputs typically obtained include:

– Scatter plots, histograms and statistical measures of
latency data

11

Status
● The General Blocks library currently contains

more than 310 models in the following groups:
– * Arithmetic

– * Comparison

– * Conversions

– * Counters

– * Data Type Operations

– * Data Structure Access

– * Delays

– * Execution Control

– * File Access

– * Generators

– * Logical

– * Loops

– * Memory

– * Miscellaneous

– * Plot Generation

– * Quantity Shared Resource

– * Queues And Servers

– * Probes

– * Queues

– * Servers

– * Statistics

– * Switches

– * Timers

– * Traffic Generators

12

Recent Additions
● Additional models are being added to the library

● These new models include:
– Admin

– Append_Route_List

– Append_String

– Generic_Batcher

– Generic_UnBatcher

– LockRealTime

– Num_to_String

– PlotLive

– PortConvert

– QSR1

– QSR2

– Receiver

– Router

– Sender

– Switch_5way

13

General Blocks Library Devices
 New_Models
 Generic_Batcher
 Generic_UnBatcher
 Receiver
 Sender
 PlotLive
 LockRealTime
 QSR1
 QSR2
 Switch_5way

 Vectors
 VCreate
 Setup_VElem
 VLen
 Access_Vector
 GVCreate
 Setup_GVElem
 GVLen
 Access_GVector

Traffic_Generators
 Uniform_PulseTrain
 Poisson_PulseTrain
 Enabled_Uniform_PulseTrain
 Enabled_Poisson_PulseTrain
 Enabled_PulseTrain
 Arbitrary_PulseTrain

 Timers
 Start_Timer
 Set_Alarm
 Service_Timer
 Residual_Time
 Reset_Timer
 Cancel_Timer
 Cancel_Alarm
 Alarm_Active

 Switches
 True_N_Times

 T_GT_Startup
 T_GE_ParamSwitch_4way
 Switch
 Real_Within_Boundaries
 Rand_Switch_Param
 Rand_Switch
 R_LT_C
 R_LE_C
 R_GT_C
 R_GE_C
 R_EQ_C
 MemorySwitch
 I_LT_C
 I_LE_C
 I_GT_C
 I_GE_C
 I_EQ_C
 Enabled_Switch
 Bypass

 Statistical
 WeightedMeanAndVariance
 Weighted_General_Moments
 Throughput
 Time_Average
 MeanAndVariance
 Histogram
 Global_Statistics
 General_Nth_Moment
 Find_Bin
 Dimensioned_Time_Average
 Dimensioned_Ensemble_Average
 Construct_TimeAverage_Stats
 Construct_Dimensioned_Stats
 Batch_Timing
 Batch_Statistics
 Batch_Rmin
 Batch_Rmax
 Batch_Mean
 Average

Server_Resource
 SR_Server_Utilization_Probe
 SR_Server_Utilization_Per_Priority_Probe
 SR_Server_Response_Probe
 SR_Server_Occupancy_Probe
 SR_Preempt_Server_Utilization_Probe
 SR_Preempt_Server_Utilization_Per_Priority_Probe
 SR_Preempt_Server_Response_Probe
 SR_Preempt_Server_Occupancy_Probe
 Set_Resource
 Set_Preempt_Resource
 Service_wRoundRobin
 Service_wPriority_Preemption
 Service_wPriority

 QueuesAndServers
 FIFOwServers
 MultipleServers
 ParallelQueues
 PQwServers

 Queues
 Simple_LIFO
 Simple_FIFO
 FIFOwPriority
 FIFO_wPeek

 QuantityShared_Resource
 Set_QResource
 FreeBasic
 Free
 ConsumeResourceUnits
 ChangeCapacity
 AllocatePriority
 AllocateParam
 AllocateBasic
 Allocate

 Probes
 WriteTnow
 ThroughputDelayProbe
 ThroughputVsTimeProbe
 TextualDescriptionProbe
 SystemLatencyProbe
 ScatterPlotZ
 ScatterPlotQ
 ScatterPlot
 SelectFieldProbe
 RealvsTimeProbe
 ProcessTimeLineProbe
 InsertStatFields
 HistogramProbeF2_F1
 HistogramProbe
 GenericProbe
 GenericHyperGraphProbe
 EventProbe_with_Comm
 EventProbe
 CreateCDFfileInit
 CreateCDFfileF2_F1
 CreateCDFfile
 BatchStatisticsProbe_f2_f1
 BatchStatisticsProbe
 BatchNthMomentProbe_f2_f1
 BatchNthMomentProbe
 BatchMeanProbe_f2_f1
 BatchMeanProbe

 Plot_Generation
 BuildPlot_Ytime
 BuildPlot_Yonly
 BuildPlot_Y
 BuildPlot_XY
 BuildPlot
 BuildHistogram

 Number_Generators
 UserCDF_RanGen
 UniformRangenParam
 UniformRangen
 U_0_to_1_RanGen
 TStop
 TNow
 Rconst
 PoissonRangenParam
 PoissonRangen
 N01_Rangen
 NormalRangen
 NormalRangenParam
 IU_Parem
 IU_NE_C
 IU_MinMax_Param
 IU_MinMax
 IU
 Iconst
 GammaRangenParam
 GammaRangen
 ExponRanGenParam
 ExponRanGen
 BinomialRangenParam
 BinomialRangen

 Miscellaneous
 TimeBetweenTriggers
 SystemCall
 ServiceSetup
 Print_message
 PrintEnvelope
 Print_real
 Print_int
 Dijkstra
 Central_Utilities
 Ack_Setup

14

General Blocks Library Devices II
 PromptFloat
 PopUpMessage
 Navigate_View
 MPGraph
 Hilite_Box
 GenericProbePopup
 ColorController
 ColorBox
 Button_box

File_Access
 WriteInfo_Numeric
 WriteFile_String
 WriteFile_Real
 WriteFile_Field
 WriteFile_AppendField
 WriteFile_Int
 ReadFile_String
 ReadFile_Real
 ReadFile_Line
 ReadFile_Int
 OpenFileWrite
 OpenFileRead
 OpenFileAppend
 CloseFile

 Execution_Control
 Wrapup
 Terminate
 OneWay
 OnePulse
 Merge
 Init
 Gate_Switch
 Gate
 Execute_in_order_4
 Execute_in_order_3
 Execute_in_order
 Control_Signal_Generator

Counters
 UpDownCounterChangeValue
 UpDownCounter
 SimpleCounter
 Int_Accumulator
 GlobalCount
 Counter
 CircularCounter
 Accumulator

 Conversions
 Truncate
 Round
 Int_to_Real

 Comparison
 StringEqualsParam
 Set_Equals
 R_LessThanOrEqual
 R_LessThan
 R_GreaterThanOrEqual
 R_GreaterThan
 R_Equals
 Odd
 I_LessThanOrEqualE
 I_LessThan
 I_GreaterThanOrEqual
 I_GreaterThan
 I_Equals
 Even

Arithmetic
 Increment
 Decrement
 I_add
 I_subtract

 Imult
 I_mult
 I_div
 I_divprotect
 Imod
 I_mod
 Iabs
 Imin
 Imax
 Ichs
 Igain
 R_add
 R_subtract
 R_mult
 R_div
 R_divprotect
 Rsqrt
 Rabs
 Rmin
 Rmax
 Rchs
 Rgain
 sin_X
 cos_X
 tan_X
 ln_X
 exp_X
 X_powr_Iconst
 X_powr_Y
 five_input_expression
 one_input_expression_R
 one_input_expression_I
 Rlimiter
 Ilimiter
 Reciprocal
 General_Expression

 Number_Generators
 UserCDF_RanGen
 UniformRangenParam
 UniformRangen
 U_0_to_1_RanGen
 TStop
 TNow
 Rconst
 PoissonRangenParam
 PoissonRangen
 N01_Rangen
 NormalRangen
 NormalRangenParam
 IU_Parem
 IU_NE_C
 IU_MinMax_Param
 IU_MinMax
 IU
 Iconst
 GammaRangenParam
 GammaRangen
 ExponRanGenParam
 ExponRanGen
 BinomialRangenParam
 BinomialRangen

 Miscellaneous
 TimeBetweenTriggers
 SystemCall
 ServiceSetup
 Print_message
 PrintEnvelope
 Print_real
 Print_int
 Dijkstra
 Central_Utilities
 Ack_Setup

 Memory
 WriteMemory
 RealLocalMem
 ReadMemory
 MultipleBuffers
 Mem_increment
 Mem_decrement
 LocalMem_wCopy
 LocalMemRef
 LocalMem
 IntLocalMemory
 ActiveReadMemory

 Loops
 Real_Do_Param
 Real_Do
 Int_Do_Param
 Int_Do_1_N
 Int_Do_0_Nminus1
 Int_Do

 Logical
 False
 True
 Nxor
 Xor
 Nor
 Nand
 Not
 Or
 And

 Graphical_Interface
 Slider_box
 PromptInt

Delays
 FixedProcDelay
 FixedAbsDelay
 AbsDelay

Data_Structure_Access
 TypeSwitch
 SelectField
 MakeRealDS
 InsertTNow
 InsertMultipleFieldParams
 InsertMultipleTNow
 InsertFieldTNow
 InsertFieldParam
 InsertField
 Declare_DS
 Create_DS
 Coerce_DS

 Data_Structure_Operations
 TypeOf
 TypeConst
 TypeCompatible
 Tequals
 Split_wDelay
 Split3
 Split
 Sink
 Junction
 Join
 Copy2
 CopyDS_wDelay
 CopyDS

15

Library Configuration

● General Blocks based
simulations generally utilize
several libraries

● All.sim contains the basic
elements (devices) of the
General Blocks library.

● Library.sim contains information
to group the All.sim models into
manageable hierarchical groups

● One or more local libraries,
containing module level and
sometimes device level models,
are generally referenced

● The User's simulation model will
reference these libraries

All.sim

Library.sim

users_lib.sim My_model.sim

16

General Blocks Files
● Library.sim is used to organize the models into

logical groupings for display and access by the
CSIM gui

● All.sim contains the detailed implementation code
for all of the models in the library

● data_structs.txt contains the definitions for all
compound data structures (message definitions)
that will be used in simulation

● All simulations will require an All.sim and a
data_structs.txt; Library.sim is optional (although
very useful).

● CSIM will provide additional object files.

17

Starting A New Model
● To Start a new General-Blocks model:

1 Include reference to GenBlocks model library
● File / Import by Reference
● $CSIM_MODEL_LIBS/general_blocks/Library.sim

2 Begin drawing block diagrams

● The main file to include is Library.sim
– Lists and categorizes all models
– Includes All.sim
–

● The All.sim file contains all the block models

18

Excerpts from Library.sim
• %include $CSIM_ROOT/model_libs/general_blocks/All.sim
•

•

• <DEFINE_LIBRARY> Counters
• <MODEL> UpDownCounterChangeValue </MODEL>
• <MODEL> UpDownCounter </MODEL>
• <MODEL> SimpleCounter </MODEL>
• <MODEL> Int_Accumulator </MODEL>
• <MODEL> GlobalCount </MODEL>
• <MODEL> Counter </MODEL>
• <MODEL> CircularCounter </MODEL>
• <MODEL> Accumulator </MODEL>
• </DEFINE_LIBRARY>
•
• <DEFINE_LIBRARY> Conversions
• <MODEL> Truncate </MODEL>
• <MODEL> Round </MODEL>
• <MODEL> Int_to_Real </MODEL>
• </DEFINE_LIBRARY>
•
• <DEFINE_LIBRARY> Comparison
• <MODEL> StringEqualsParam </MODEL>
• <MODEL> Set_Equals </MODEL>
• <MODEL> R_LessThanOrEqual </MODEL>
• <MODEL> R_LessThan </MODEL>
• <MODEL> R_GreaterThanOrEqual </MODEL>
• <MODEL> R_GreaterThan </MODEL>
• <MODEL> R_Equals </MODEL>
• <MODEL> Odd </MODEL>
• <MODEL> I_LessThanOrEqualE </MODEL>
• <MODEL> I_LessThan </MODEL>
• <MODEL> I_GreaterThanOrEqual </MODEL>
• <MODEL> I_GreaterThan </MODEL>
• <MODEL> I_Equals </MODEL>
• <MODEL> Even </MODEL>
• </DEFINE_LIBRARY>

•<DEFINE_LIBRARY> Plot_Generation
• <MODEL> BuildPlot_Ytime </MODEL>
• <MODEL> BuildPlot_Yonly </MODEL>
• <MODEL> BuildPlot_Y </MODEL>
• <MODEL> BuildPlot_XY </MODEL>
• <MODEL> BuildPlot </MODEL>
• <MODEL> BuildHistogram </MODEL>
•</DEFINE_LIBRARY>
•
•<DEFINE_LIBRARY> Number_Generators
• <MODEL> UserCDF_RanGen </MODEL>
• <MODEL> UniformRangenParam </MODEL>
• <MODEL> UniformRangen </MODEL>
• <MODEL> U_0_to_1_RanGen </MODEL>
• <MODEL> TStop </MODEL>
• <MODEL> TNow </MODEL>
• <MODEL> Rconst </MODEL>
• <MODEL> PoissonRangenParam </MODEL>
• <MODEL> PoissonRangen </MODEL>
• <MODEL> N01_Rangen </MODEL>
• <MODEL> NormalRangen </MODEL>
• <MODEL> NormalRangenParam </MODEL>
• <MODEL> IU_Parem </MODEL>
• <MODEL> IU_NE_C </MODEL>
• <MODEL> IU_MinMax_Param </MODEL>
• <MODEL> IU_MinMax </MODEL>
• <MODEL> IU </MODEL>
• <MODEL> Iconst </MODEL>
• <MODEL> GammaRangenParam </MODEL>
• <MODEL> GammaRangen </MODEL>
• <MODEL> ExponRanGenParam </MODEL>
• <MODEL> ExponRanGen </MODEL>
• <MODEL> BinomialRangenParam </MODEL>
• <MODEL> BinomialRangen </MODEL>
•</DEFINE_LIBRARY>

19

Example Model from All.sim
DEFINE_DEVICE_TYPE: R_add
 PORT_LIST(in1, in2, out);
 DOCUMENTATION:
 /**/
 /* The model adds the value of in1 and in2 */
 /* Input Ports */
 /* in1 Data Type: REAL */
 /* in2 Data Type: REAL */
 /* Output Ports */
 /* out Data Type: REAL */
 /* Parameters(none) */
 /**/
 END_DOCUMENTATION.
 DEFAULT_ICON($CSIM_MODEL_LIBS/general_blocks/Icons/2_1.ppm);

 DEFINE_THREAD: start_up`
 {
 Envelope *a, *b;
 float x, y; in len;

 while (1)
 {
 RECEIVE("in1", &a, &len);
 x = consume_real(a);
 RECEIVE("in2", &b, &len);
 y = consume_real(b);
 x = x + y;
 a = make_real_envelope(x);
 SEND("out", a, 1);
 }
 }
 END_DEFINE_THREAD.

END_DEFINE_DEVICE_TYPE.

20

General Blocks Messages
● Data structures are used to represent messages.

● In the General Blocks Library, there can be several types of
messages

– “Simple” data structures definitions are built-in
● Int, real, string

– Compound data structures are defined by the user in the
data_structs.txt file

● Assemblies of simple data structures

● Typically, data structures contain several fields:

– Some may contain information about the message, i.e. message size,
message priority, message creation time

– Others may be used to hold information about the system state, probe
data, calculation results, etc.

● Some General Blocks “devices” (i.e. Built-in models) operate with
compound data structures

– Others require specific simple data structures

● User models may require specific compound data structures

21

Example data_structs.txt

<DEFINE_DATA_STRUCTURES>

struct Throughput_Delay_DS
 {
 real Mean_Delay=0
 real Var_Delay=0
 real Mean_Throughput=0
 real Var_Throughput=0
 int Nsamples
 }

struct Basic_Statistic
 { real mean
 real variance
 real min
 real max
 int Nsamples=0
 }

struct Timing_Packet
{ real Time_Created
 real Intermediate_Time
 real Time_Finished
 int Length
 int Type
}

struct Event_Data
 { real EVENT_START_TIME=0
 int EVENT_SEQUENCE_NUMBER=0
 int EVENT_TYPE_PARAMS_INDEX=0
 real PREV_LINKED_EVENT_START_TIME=0
 int PREV_LINKED_EVENT_SEQ_NUMBER=0
 int SOFT_RESET_COMMAND=0
 real EVENT_LENGTH_X_100_NSEC=1000
}

struct Application_Message_Transaction_DS
 { int Application_Message_Type_Code=0
 int Application_Message_Sequence_Number=0
 int Application_Message_Source=0
 int Application_Message_Destination=0
 int Application_Message_Size_Bytes=10
 int Application_Message_Priority=0
 real Application_Message_Create_Time=0
 real Application_Message_Start_XMIT_Time=0
 real Application_Message_Complete_XMIT_Time=0
 real Application_Message_RCV_Complete_Time=0
 real Application_Message_Destination_Time=0
 Event_Data Application_Message_User_Data
 gvec My_Vector_Data
 }

</DEFINE_DATA_STRUCTURES>

22

Example of Message Flows

<DEFINE_DATA_STRUCTURES>

struct CompuSys
 {
 char MsgType=Heartbeat
 char StackACK
 char ACK=NoACK
 int NUMBER
 int MsgLENGTH
 int PRIORITY
 real CREATED
 real COMPLETED
 real MEAN
 real EARLIEST
 real LATEST
 real INTERMEDIATE
 }
</DEFINE_DATA_STRUCTURES>

● The compound
data structure
used here is:

23

Data Structures Approach

● The Data_Type_Container (Envelope) is
the atomic component of data
structures for the general blocks library

● Compound data structures are built
from linked lists of Envelopes

● Organization of an Envelope:

kind

n1

n2

*data

*variable_name

*type_name

*next

*child

ref_count

struct Data_Type_Container
 {
 int kind, n1, n2; /* Type and dimension(s). */
 void *data;
 char *variable_name, *type_name;
 struct Data_Type_Container *next, *child;
 int ref_count;
 } *DATA_STRUCTURE_DEFINITIONS=0;

typedef struct Data_Type_Container Envelope;

24

Copying Messages

● There are two methods for copying (splitting)
messages (data structures)
– Pass a pointer (very fast)
– Make a deep copy of the data structure (can be slow)

● Different models use one or the other approach (i.e.
Junction uses pointers, Copy_DS makes a deep
copy)

● Deep copying may be required if both copies of the
DS will be modified

● Pointer copying may be used if the copy is only
being used as a trigger (for example)

25

Resources, Servers and Probes
Set_Preempt_Resource SR_Preempt_Server_Utilization_Probe

Service_wPriority_Preemption

Service_wPriority_Preemption

Service_wPriority_Preemption

SR_Preempt_Server_Occupancy_Probe

SR_Preempt_Server_Response_Probe

SR_Preempt_Server_Utilization_Per_Priority_Probe

● The properties of a Resource (i.e. CPU)
are defined using a Set_Resource device

● Many (i.e. hundreds) of Servers (i.e.
Service_wPriority_Preemption) may be
mapped to a single Resource

● An individual Server is often used to
represent the execution of a particular
piece of software

● The correlation between resources,
servers and probes is set by the
ResourceID attribute

● Up to four Probes (as shown) may be
attached to a given Resource

● The Utilization probes output two files:

– Batched and global utilization

● The other probes each output four files:

– Batched and global average

– Batched and global peak

ResourceID = CPU1

ResourceID = CPU1

ResourceID = CPU1

ResourceID = CPU1 ResourceID = CPU1

ResourceID = CPU1

ResourceID = CPU1

ResourceID = CPU1

26

Examples
● “Histogram testcase”

– Objective:
● Need to run many Monte Carlo iterations of a simulation
● Need to collect latency statistics (min, mean and max) for four point

pairs (12 data points per iteration)
● Need to identify the global min, mean and max for each
● Need a histogram of the complete data set for one of the point pairs
● Need to generate all required output fully automatically

– Approach:
● Use the Iterator to run iterations and collect min, mean and max
● Use a separate “simulation” to (redundantly) collect min, mean and

max
● Use another separate “simulation” to assemble a global histogram
● Tie together with several scripts
● Demonstrate some “unusual” applications of a CSIM model

27

Block Diagram of “hist_test”

Build core
simulation

Build data
collector

Build and run
histogram
generator

Run core
simulation

Run data
collector

Run Iterator
(each iteration)

Move
files

Move
files

Run N Times

28

Using General Blocks as a Visual
Programming Environment

● This CSIM
“model”
reads four
files (scatter
plot data),
calculates the
min, mean
and max
values for
each, and
appends the
results onto
other files.

29

Running Simulations Faster (Summary)

● For the fastest simulation turnaround:
– Run nongraphically
– Compile with optimization
– Execute from the local /tmp directory
– Direct stdout and stderr into a file
– Run from the fastest machine available

30

Running Simulations Faster (Details)

● Graphical simulations will run slower than nongraphical

● A running graphical simulation will run faster

– while animation is turned off

– By increasing the time display increment (slightly)

– By directing terminal output to a file (stdout & stderr)
● You can build a faster graphical simulation

– By turning off debugging (removing -g from gcc cmd)

– By turning on optimization (adding -O3 to gcc cmd)

– By copying all files to the local /tmp directory and
executing there

31

Running Simulations Faster (Details)

● Efficient simulations are always faster than
inefficient simulations

– Build times are proportional to the number of
devices (boxes)

– Simulation time is proportional to the number of
device-events

– Extraneous devices, inefficiently implemented
models, etc. slow things down proportionately

32

Router Model
● Router has 16 bidirectional ports

– Flexible specification of routing rules, i.e.
● route_24_50_20 = p5
● route_24_50_20_7 = p1
● route_DEFAULT = p2
● route_3_2_1_1_0_3_7up = p1
● route_cabinet2_card3_cpu4 = p4
● route_24_50_F = p3

● Supports multicast publish, subscribe
● multi_w_x_y_z = p1_p2_p3_p4

● Supports dynamic subscribe/unsubscribe
● subscribe_24_50_20_6 = p6_p8
● unsubscribe_24_50_20_1 = p13_p14

33

Admin Model
● The Admin is a scheduler, oriented to networked

environments
● Operation:

– A message, containing a task name, is sent to the Admin to
request initiation of the task. The “tasks” are typically
comparable to a sequence diagram.

– The admin uses the specified algorithm (four are supported)
to assign the task to a processor. It updates its status table.

– The admin sends a message to the assigned processor to
start a task of the specified type

– The processor interprets the message and starts the task.
– At the completion of a task, the processor sends a message

to the Admin to report the task completion.
– The Admin updates its status table.

34

Admin Task Assignment
● A file (task_table.dat) defines:

– Task names, processor names, scheduling
algorithms and maximum task loading for
each processor

● An example task table:

 CPU1 CPU2 CPU3 CPU4 CPU5 CPU6
tsk1 fill_u 8 7 0 0 7 8
tsk2 fill_d 5 0 0 0 0 5
tsk3 u_task 3 0 4 4 0 3
tsk4 u_all 5 2 6 6 2 5

35

Sender/Receiver

● The Sender and Receiver models use
named synchrons to “wirelessly” send
data structures between points

● One to one, one to many, many to one
and many to many configurations can be
supported

● Typically used to distribute control
signals, alarms and triggers

