Number Generator Blocks
UserCDF_RanGen
File: general_blocks/Generators/UserCDF_RanGen.sim
Description
The model generates a random value according to the specified cumulative
distribution function (CDF).
The CDF is specified as a set of points in the named file.
Ports
Input Ports
- trigger Data
Type: TRIGGER
Output Ports
Parameters
- seed = -1 Data
Type: INTEGER
- CDF_File Data Type: Any
name
UniformRangenParam
File: general_blocks/Generators/UniformRangenParam.sim
Description
The model generates random numbers uniformly distribution between
lower_bound and upper_bound.
Ports
Input Ports
- trigger Data Type: TRIGGER
Output Ports
Parameters
- seed = -1
Data Type: INTEGER
- lower _bound=0.0 Data Type:
REAL
- upper _bound=1.0 Data Type: REAL
UniformRangen
File: general_blocks/Generators/UniformRangen.sim
Description
The model generates numbers distributed uniformly between lower
and upper.
When both inputs are available a random number will be generated and
placed on the port out.
Ports
Input Ports
- lower
Data Type: REAL
- upper
Data Type: REAL
Output Ports
Parameters
- seed = -1 Data
Type: INTEGER
U_0_to_1_RanGen
File: general_blocks/Generators/U_0_1_RanGen.sim
Description
The model provides random numbers with a uniform distribution between
0 and 1 {U(0,1)}.
Ports
Input Ports
- trigger Data
Type: TRIGGER
Output Ports
Parameters
- seed = -1 Data
Type: INTEGER
TStop
File: general_blocks/Generators/TStop.sim
Description
After the trigger input has been received, the model places the value
of
the simulation parameter TStop on the port out.
Ports
Input Ports
- trigger Data
Type: TRIGGER
Output Ports
Parameters
TNow
File: general_blocks/Generators/TNow.sim
Description
The model places the value of the simulation clock on the out
port.
The model executes and output every time the trigger input
is enabled.
Ports
Input Ports
- trigger
Data Type: TRIGGER
Output Ports
Parameters
Rconst
File: general_blocks/Generators/RConst.sim
Description
The model generates a Real constant specified by the parameter
Rconstant
and places it on the out port.
Ports
Input Ports
- trigger
Data Type: TRIGGER
Output Ports
Parameters
- Rconstant
Data Type: REAL
PoissonRangenParam
File: general_blocks/Generators/PoissonRangenParam.sim
Description
Every time the input trigger is enabled, a random number will
be generated
from the Poisson distribution and will be placed on the output
Nevents.
Ports
Input Ports
- trigger
Data Type: TRIGGER
Output Ports
- Nevents Data
Type: INTEGER
Parameters
- seed = -1
Data Type: INTEGER
- MeanRate
Data Type: REAL
PoissonRangen
File: general_blocks/Generators/Poisson.sim
Description
Every time the input lambda is enabled, a random number will
be generated
from the Poisson distribution and will be placed on the output
Nevents.
Ports
Input Ports
Output Ports
- Nevents
Data Type: INTEGER
Parameters
- seed = -1
Data Type: INTEGER
NormalRangenParam
File: general_blocks/Generators/NormalRangenParam.sim
Description
The model generates Gaussion (Normal) random variates,
with specified Mean and Variance.
Ports
Input Ports
- trigger Data
Type: TRIGGER
Output Ports
Parameters
- seed = -1
Data Type: INTEGER
- Mean=0.0
Data Type: REAL
- Variance=1.0
Data Type: REAL
NormalRangen
File: general_blocks/Generators/NormalRangen.sim
Description
The model generates Gaussion (Normal) random variates,
with specified Mean and Variance.
Ports
Input Ports
- Mean
Data Type: REAL
- Variance
Data Type: REAL
Output Ports
Parameters
- seed = -1
Data Type: INTEGER
N01_Rangen
File: general_blocks/Generators/N01_Rangen.sim
Description
The model generates Gaussion (Normal) random variates,
with Mean and Variance of 1.0.
Ports
Input Ports
- trigger Data
Type: TRIGGER
Output Ports
Parameters
- seed = -1
Data Type: INTEGER
IU_Parem
File: general_blocks/Generators/IU_Parem.sim
Description
Random number generator for Integer where the range is a parameter
of the module.
Ports
Input Ports
- trigger
Data Type: TRIGGER
Output
Ports
Parameters
- seed = -1
Data
Type: INTEGER
- Upperlimit=1
Data Type: INTEGER
IU_NE_C
File: general_blocks/Generators/IU_NE_C.sim
Description
Random number generator for Integer which will not generate a value
equal to C
( a constant parameter named value_to_reject ). The model generates
an integer
number from a uniform distribution. The model executes when the upperlimit
input
is enabled with an Integer. Then, a random number value will be chosen
in the
range (0, upperlimit). If the random number equals value_to_reject
, then another
random number will be generated before placing the random number on
out .
Ports
Input
Ports
- upperlimit
Data Type: INTEGER
Output
Ports
Parameters
- seed
= -1 Data
Type: INTEGER
- value_to_reject
Data Type: INTEGER
IU_MinMax_Param
File: general_blocks/Generators/IU_MinMax_Param.sim
Description
Random number generator for Integers. The model generates
an integer number from a uniform distribution. The model executes
when input gets enabled. Then, a random Integer value will be
chosen between parameters min and max, inclusive.
Ports
Input Ports
- trigger
Data Type: TRIGGER
Output Ports
Parameters
- seed
= -1 Data Type: INTEGER
- min
Data Type:
INTEGER
- max
Data Type: INTEGER
IU_MinMax
File:
general_blocks/Generators/IU_MinMax.sim
Description
Random number generator for Integers. The model generates
an integer number from a uniform distribution. The model executes
when both inputs are enabled. Then, a random Integer value will be
chosen between min and max, inclusive.
Ports
Input Ports
- min
Data Type: INTEGER
- max
Data Type: INTEGER
Output Ports
Parameters
-
seed = -1 Data Type: INTEGER
IU
File:
general_blocks/Generators/IU.sim
Description
Random number generator of Integers.
Ports
Input Ports
-
upperlimit Data Type: INTEGER
Output Ports
Parameters
-
seed = -1 Data Type: INTEGER
Iconst
File:
general_blocks/Generators/IConst.sim
Description
The model generates a constant integer specified by the model
parameter IntConstant and places it on the out port.
The model will not be enabled unless the trigger input has
been received.
Ports
Input Ports
-
trigger Data Type: TRIGGER
Output Ports
Parameters
-
IntConstant Data Type: INTEGER
GammaRangenParam
File: general_blocks/Generators/GammaRangenParam.sim
Description
Generates Gamma random variates, with specified shape and scale.
Ports
Input Ports
-
trigger Data Type: TRIGGER
Output Ports
Parameters
-
Shape Data Type:
REAL
-
Scale Data
Type: REAL
-
seed = -1 Data Type: INTEGER
GammaRangen
File: general_blocks/Generators/GammaRangen.sim
Description
Generates Gamma random variates, with specified shape and scale.
Ports
Input Ports
-
Shape Data Type: REAL
-
Scale Data Type: REAL
Output Ports
Parameters
-
seed = -1 Data
Type: INTEGER
ExponRanGenParam
File: general_blocks/Generators/ExponRangenParam.sim
Description
The model generates random numbers with an exponential distribution.
Exponentially distributed random numbers model the times between
events when the processing that generates the events is memory less.
Ports
Input Ports
-
trigger Data Type: TRIGGER
Output Ports
Parameters
-
mean = 10.0 Data Type: REAL
-
seed = -1 Data
Type: INTEGER
ExponRanGen
File: general_blocks/Generators/ExponRangen.sim
Description
The model generates random numbers with an exponential distribution
with a
mean determined by the signal input. The exponential distribution
is used to
model the time between random events from a memory less source.
Ports
Input Ports
Output Ports
Parameters
-
seed = -1 Data Type: INTEGER
BinomialRangenParam
File: general_blocks/Generators/BinomialRangenParam.sim
Description
The model is a generator for binomial random numbers with the
parameters
of the distribution as parameters. The binomial distribution is the
distribution of
the number of successful outcomes resulting from Ntrials of
an experiment where
each trial had probability EventProbability of success.
Ports
Input Ports
-
trigger Data Type: TRIGGER
Output Ports
Parameters
-
Ntrials
Data Type: INTEGER
-
EventProbability Data Type: REAL
-
seed = -1 Data Type:
INTEGER
BinomialRangen
File: general_blocks/Generators/BinomialRangen.sim
Description
The model generates the number of successes of Ntrials of
an event where each
trial has a probability of success of EventProbability. When
they are both enabled
the random number will be generated and placed on the out
port.
Ports
Input Ports
-
Ntrials
Data Type: INTEGER
-
EventProbability Data Type: REAL
Output Ports
Parameters
-
seed = -1 Data Type: INTEGER